ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Klaus Rehme
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 331-342
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT87-A33973
Articles are hosted by Taylor and Francis Online.
Measurements of the mean velocity, wall shear stresses, and turbulence have been performed in a rod bundle of four parallel rods arranged in a rectangular channel (P/D = W/D = 1.148) for three ratios of length-to-hydraulic diameter (L/Dh). Distributions of the mean velocity and the wall shear stresses have been measured in four quadrants for L/Dh = 48.7, 73.0, and 97.4. The full Reynolds stress tensor has been determined by the hot-wire technique in only one quadrant for each L/Dh ratio. The Reynolds number of this investigation was Re = 1.17 × 105. The experimental results show that the structure of turbulence does not change significantly between L/Dh = 48.7 and 97.4. The flow redistribution among the subchannels caused by the inlet conditions, however, is not completed at L/Dh = 97.4. The experimental wall shear stresses at L/Dh = 97.4 agree satisfactorily with the wall shear stresses calculated by the VELASCO code.