ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Spent fuel transfer project completed at INL
Work crews at Idaho National Laboratory have transferred 40 spent nuclear fuel canisters into long-term storage vaults, the Department of Energy’s Office of Environmental Management has reported.
Edmondo Zamorani
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 313-319
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33971
Articles are hosted by Taylor and Francis Online.
Previous works on cement leached in water and containing radioactive wastes like cesium and strontium agree to attribute the release in the liquid phase to a diffusion mechanism. The kinetic release can be represented by an empirical relationship in which the dependence of the leached fraction Fr = C/C0 versus time t assumes the form Fr = Btn and the factor n = 0.5 is typical of a diffusion process. On the other hand, the results of our studies on cement leached in static water demonstrate that the release of calcium, considered to be representative of matrix degradation, follows a time dependence of t0.25. A model is suggested for which the release of calcium depends on superposition of two processes: a diffusion through a reaction layer of calcium silicate hydrate around the cement particles during the hydration step and a diffusion of elements from the bulk of cement toward the external surface of the specimen. Based on this schematic diffusion mechanism, some suggestions are advanced to improve the physical characteristics and to increase the retention of the radioactive waste encapsulated in the cement matrix.