ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Edmondo Zamorani
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 313-319
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT87-A33971
Articles are hosted by Taylor and Francis Online.
Previous works on cement leached in water and containing radioactive wastes like cesium and strontium agree to attribute the release in the liquid phase to a diffusion mechanism. The kinetic release can be represented by an empirical relationship in which the dependence of the leached fraction Fr = C/C0 versus time t assumes the form Fr = Btn and the factor n = 0.5 is typical of a diffusion process. On the other hand, the results of our studies on cement leached in static water demonstrate that the release of calcium, considered to be representative of matrix degradation, follows a time dependence of t0.25. A model is suggested for which the release of calcium depends on superposition of two processes: a diffusion through a reaction layer of calcium silicate hydrate around the cement particles during the hydration step and a diffusion of elements from the bulk of cement toward the external surface of the specimen. Based on this schematic diffusion mechanism, some suggestions are advanced to improve the physical characteristics and to increase the retention of the radioactive waste encapsulated in the cement matrix.