ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Constantine P. Tzanos
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 263-278
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33966
Articles are hosted by Taylor and Francis Online.
A model was developed for faster than real-time liquid-metal fast breeder reactor core transient analysis for purposes of continuous on-line data validation, plant state verification, and fault identification. The basic feature of this model is the use of a nodal approximation for the coolant, cladding, and fuel temperatures that gives adequately accurate power and temperature predictions with very few axial nodes. In applications of this methodology to fast loss-of-flow and overpower transients, computation times of about one-thirtieth of the real transient time per thermal-hydraulic channel were obtained. The predicted coolant and cladding temperature distributions were practically identical to those resulting from detailed finite difference computations. The predicted fuel temperatures differed by ∼1% or less from those obtained from the same finite difference computations. The analysis of the Transient Reactor Test Facility experiment TS-1C and the Experimental Breeder Reactor II experiment SHRT-17 showed very good agreement between model predictions and measurements.