ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Constantine P. Tzanos
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 263-278
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33966
Articles are hosted by Taylor and Francis Online.
A model was developed for faster than real-time liquid-metal fast breeder reactor core transient analysis for purposes of continuous on-line data validation, plant state verification, and fault identification. The basic feature of this model is the use of a nodal approximation for the coolant, cladding, and fuel temperatures that gives adequately accurate power and temperature predictions with very few axial nodes. In applications of this methodology to fast loss-of-flow and overpower transients, computation times of about one-thirtieth of the real transient time per thermal-hydraulic channel were obtained. The predicted coolant and cladding temperature distributions were practically identical to those resulting from detailed finite difference computations. The predicted fuel temperatures differed by ∼1% or less from those obtained from the same finite difference computations. The analysis of the Transient Reactor Test Facility experiment TS-1C and the Experimental Breeder Reactor II experiment SHRT-17 showed very good agreement between model predictions and measurements.