ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kazuo Azekura
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 255-262
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33965
Articles are hosted by Taylor and Francis Online.
An analysis model has been proposed to evaluate reactivity due to horizontal fast breeder reactor (FBR) core deformation in seismic events by direct three-dimensional eigenvalue calculations, which are impossible for current neutronic analysis programs. The model is based on a current-centered finite difference neutron diffusion calculation method. Macroscopic neutron reaction cross sections are defined, which take into account changes in both mesh volume and material composition. Further, the expression of vertical neutron current is modified in such a way as to take into account changes in vertical mesh interface areas. By using these macroscopic neutron cross sections and the modified expression for vertical neutron current, it is possible to calculate the effective multiplication factor of a deformed FBR core within the bounds of a finite difference diffusion calculation method using the same mesh division used for the normal nondeformed core. Computation time and computer core memory required by the presented model are almost the same as in current finite difference methods. The calculated reactivities for simple one-dimensional slab, two-dimensional slab, and three-dimensional hexagonal systems agreed within 5% of those obtained by either a finite element method or a finite difference method. The agreement was particularly good (within 2%) for cases in which fuel assembly pitches decrease around the horizontal core midplane; therefore, large reactivity is inserted.