ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Kazuo Azekura
Nuclear Technology | Volume 77 | Number 3 | June 1987 | Pages 255-262
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33965
Articles are hosted by Taylor and Francis Online.
An analysis model has been proposed to evaluate reactivity due to horizontal fast breeder reactor (FBR) core deformation in seismic events by direct three-dimensional eigenvalue calculations, which are impossible for current neutronic analysis programs. The model is based on a current-centered finite difference neutron diffusion calculation method. Macroscopic neutron reaction cross sections are defined, which take into account changes in both mesh volume and material composition. Further, the expression of vertical neutron current is modified in such a way as to take into account changes in vertical mesh interface areas. By using these macroscopic neutron cross sections and the modified expression for vertical neutron current, it is possible to calculate the effective multiplication factor of a deformed FBR core within the bounds of a finite difference diffusion calculation method using the same mesh division used for the normal nondeformed core. Computation time and computer core memory required by the presented model are almost the same as in current finite difference methods. The calculated reactivities for simple one-dimensional slab, two-dimensional slab, and three-dimensional hexagonal systems agreed within 5% of those obtained by either a finite element method or a finite difference method. The agreement was particularly good (within 2%) for cases in which fuel assembly pitches decrease around the horizontal core midplane; therefore, large reactivity is inserted.