ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Horst-Michael Prasser, Gerhard Grunwald, Thomas Höhne, Sören Kliem, Ulrich Rohde, Frank-Peter Weiss
Nuclear Technology | Volume 143 | Number 1 | July 2003 | Pages 37-56
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT03-A3396
Articles are hosted by Taylor and Francis Online.
The reactor transient caused by a perturbation of boron concentration or coolant temperature at the inlet of a pressurized water reactor (PWR) depends on the mixing inside the reactor pressure vessel (RPV). Initial steep gradients are partially lessened by turbulent mixing with coolant from the unaffected loops and with the water inventory of the RPV. Nevertheless the assumption of an ideal mixing in the downcomer and the lower plenum of the reactor leads to unrealistically small reactivity inserts. The uncertainties between ideal mixing and total absence of mixing are too large to be acceptable for safety analyses. In reality, a partial mixing takes place. For realistic predictions it is necessary to study the mixing within the three-dimensional flow field in the complicated geometry of a PWR. For this purpose a 1:5 scaled model [the Rossendorf Coolant Mixing Model (ROCOM) facility] of the German PWR KONVOI was built. Compared to other experiments, the emphasis was put on extensive measuring instrumentation and a maximum of flexibility of the facility to cover as much as possible different test scenarios. The use of special electrode-mesh sensors together with a salt tracer technique provided distributions of the disturbance within downcomer and core entrance with a high resolution in space and time. Especially, the instrumentation of the downcomer gained valuable information about the mixing phenomena in detail. The obtained data were used to support code development and validation. Scenarios investigated are the following: (a) steady-state flow in multiple coolant loops with a temperature or boron concentration perturbation in one of the running loops, (b) transient flow situations with flow rates changing with time in one or more loops, such as pump startup scenarios with deborated slugs in one of the loops or onset of natural circulation after boiling-condenser-mode operation, and (c) gravity-driven flow caused by large density gradients, e.g., mixing of cold emergency core cooling (ECC) water entering the RPV through the ECC injection into the cold leg. The experimental results show an incomplete mixing with typical concentration and temperature distributions at the core inlet, which strongly depend on the boundary conditions. Computational fluid dynamics calculations were found to be in good agreement with the experiments.