ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Philippe J. Vernier, Philippe Solignac
Nuclear Technology | Volume 77 | Number 1 | April 1987 | Pages 82-91
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT87-A33954
Articles are hosted by Taylor and Francis Online.
Our work was restricted to elementary models of condensation, coupling a laminar water film with an air-steam mixture boundary layer, under steady-state conditions, for some simple physical situations. We tested two categories of models. The models in the first category are merely the set of balance equations for which Sparrow’s numerical solutions have been replaced by Rose’s closed-form solutions. The models in the second category make use of correlations of mass transfer obtained by the Chilton-Colburn analogy and assumed closure laws concerning heat transfer across the film. The closed form of the solutions enabled us to propose numerical algorithms without integration, which we programmed in BASIC language. The differences we found between the results of the experiment and those of the models are systematic and positive, the calculated values being 50% less than the experimental results, on average. Comparing the abilities of the models, the situation of laminar-forced convection along a flat plate, whether the mixture is superheated or not, is the only situation where the model, using boundary layer theory, gives exact results. For the situation of turbulent free convection along a vertical wall, e.g., the containment wall of a pressurized water reactor system, the model, using the Chilton-Colburn analogy, gives only approximate results.