ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Jack L. Collins, Morris F. Osborne, R. A. Lorenz
Nuclear Technology | Volume 77 | Number 1 | April 1987 | Pages 18-31
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33948
Articles are hosted by Taylor and Francis Online.
Fission product release tests and control tests recently conducted at Oak Ridge National Laboratory have provided new experimental data that help characterize the mechanism of fission product tellurium release behavior under severe light water reactor accident conditions. Release of tellurium from the fuel rod segments has been found to be dependent on the rate and extent of cladding oxidation. Tellurium was observed to be significantly retained by metallic Zircaloy cladding at test temperatures up to 2000°C. The results indicate that the tellurium was bound by the Zircaloy cladding as zirconium telluride, but once the available metallic zirconium was oxidized by the steam, tellurium was released in favor of continued zirconium oxide formation. The collection behavior of the released tellurium indicated that it was probably released from the fuel rods as tellurides of tin, cesium, and rubidium rather than as elemental tellurium.