ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Paul W. Marshall, Jeffrey B. Lutz, James L. Kelly
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 400-407
Technical Paper | Chemical Processing | doi.org/10.13182/NT87-A33925
Articles are hosted by Taylor and Francis Online.
A need for characterization of the iodine source term used in safety calculations for hypothesized light water reactor core disruptive accidents has motivated a study in iodine volatility. Previous experimental studies have been directed at evaluating volatility of iodine at a single time shortly (1 to 12 h) after introduction into the aqueous phase. The very important variables of time in solution and gamma radiation dose rate for a range of iodine concentrations (10-8 to 10-5 gI/ml) and pHs(5, 9, and 11) are explored. All experiments were performed at ∼25°C, first in the absence of a significant radiation field and later with a gamma radiation dose rate ranging from 0.003 to 0.06 Mrad/h. Iodine was introduced as either molecular I2 or Nal with 131I(8.04-day half-life) as a tracer. Results of experiments with nonirradiated systems indicated very little volatility with Nal-initiated studies. The I2-initiated systems at pH 5 were the most volatile whereas experiments at pH 9 and 11 showed decreasing iodine volatility with time. From the experiments at pH 9, it is inferred that the partition coefficient of HOI is ∼1000. A pronounced radiation-induced reduction in iodine volatility in pH 5 iodide solutions has been demonstrated as well as a dose rate dependence in the transient phase. As with nonirradiated systems, irradiated alkaline solutions exhibit low volatility. A computer-based model incorporating water radiolysis and iodine radiolytic chemical reactions has been formulated and tested. The model successfully predicts radiation-induced volatility changes in pH 5 iodide systems. The experimentally observed dose rate dependence is also verified. At pH 9, the agreement between experimental results and predicted results is not good.