ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Paul W. Marshall, Jeffrey B. Lutz, James L. Kelly
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 400-407
Technical Paper | Chemical Processing | doi.org/10.13182/NT87-A33925
Articles are hosted by Taylor and Francis Online.
A need for characterization of the iodine source term used in safety calculations for hypothesized light water reactor core disruptive accidents has motivated a study in iodine volatility. Previous experimental studies have been directed at evaluating volatility of iodine at a single time shortly (1 to 12 h) after introduction into the aqueous phase. The very important variables of time in solution and gamma radiation dose rate for a range of iodine concentrations (10-8 to 10-5 gI/ml) and pHs(5, 9, and 11) are explored. All experiments were performed at ∼25°C, first in the absence of a significant radiation field and later with a gamma radiation dose rate ranging from 0.003 to 0.06 Mrad/h. Iodine was introduced as either molecular I2 or Nal with 131I(8.04-day half-life) as a tracer. Results of experiments with nonirradiated systems indicated very little volatility with Nal-initiated studies. The I2-initiated systems at pH 5 were the most volatile whereas experiments at pH 9 and 11 showed decreasing iodine volatility with time. From the experiments at pH 9, it is inferred that the partition coefficient of HOI is ∼1000. A pronounced radiation-induced reduction in iodine volatility in pH 5 iodide solutions has been demonstrated as well as a dose rate dependence in the transient phase. As with nonirradiated systems, irradiated alkaline solutions exhibit low volatility. A computer-based model incorporating water radiolysis and iodine radiolytic chemical reactions has been formulated and tested. The model successfully predicts radiation-induced volatility changes in pH 5 iodide systems. The experimentally observed dose rate dependence is also verified. At pH 9, the agreement between experimental results and predicted results is not good.