ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
V. F. Baston, K. J. Hofstetter, Robert F. Ryan
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 377-389
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33923
Articles are hosted by Taylor and Francis Online.
Chemical and radiochemical analyses of reactor coolant samples taken during defueling of the Three Mile Island Unit-2 (TMI-2) reactor provide relevant data to assist in understanding the solution chemistry of the radionuclides retained within the TMI-2 reactor coolant system. Hydrogen peroxide was added to various plant systems to provide disinfection for microbial contamination and has provided the opportunity to observe radionuclide release under different oxygen chemical potentials. A comparison of the radionuclide release rates with and without hydrogen peroxide has been made for these separate but related cases, i.e., the fuel transfer canal and connecting spent-fuel pool A with the TMI-2 reactor plenum in the fuel transfer canal, core debris grab sample laboratory experiments, and the reactor vessel fluid and associated core debris. Correlation and comparison of these data indicate a physical parameter dependence (surface-to-volume ratio) affecting all radionuclide release; however, selected radionuclides also demonstrate a chemical dependence release under the different oxygen chemical potentials.