ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Mohamed S. El-Genk, Sung-Ho Kim, Galal M. Zaki, Jeffrey S. Philbin, James F. Schulze, Fabian C. Foushée
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 360-369
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33921
Articles are hosted by Taylor and Francis Online.
To investigate the coolability of a uniformly heated tube by free convection of atmospheric air, heat transfer experiments were conducted using vertical open an-nuli with adiabatic outer walls. To examine the effect of the annulus ratio on the coolability of the heated tube, the experiments employed four annuli (diameter ratios of 1.155, 1.33, 1.63, and 12.0). The operating parameters included heat fluxes up to 1.38 W/cm2 with a corresponding surface temperature of 856K. The results, extrapolated to 1200 K, were used to provide a qualitative estimate of the coolability of multirod bundles, as a function of the equilibrium surface temperature and the pitch-to-diameter (P/D) ratio. Although the decay heat removal rate for P/D values <1.5 increased rapidly with P/D ratio, for larger P/D values the decay heat removal rate was insensitive to either the P/D value or the rod arrangement in the bundle. These results suggest that in TRIGA-type reactors at a typical P/D ratio of 1.12, the maximum decay heat removal level is ∼1 kW/m. This maximum corresponds to an initial decay power following sustained operation at ∼12.5 kW/m.