ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Constantine P. Tzanos
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 337-351
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33919
Articles are hosted by Taylor and Francis Online.
A method was developed for faster than real-time liquid-metal fast breeder reactor intermediate heat exchanger (IHX) analysis for purposes of continuous on-line data validation, plant state verification, and fault identification. The basic feature of this method is the utilization of spatial nodes whose sizes vary with time. The use of time-variant node sizes leads to adequately accurate solutions with a few nodes and at short computation times. Applications of this methodology to reference IHX problems with the IBM 3033 machine showed that the computation time for steady-state analysis was ∼6 ms. For transient analysis, a computation time that was one-sixteenth of the real transient time was achieved. This time can be further reduced if the special sparse structure of the system Jacobian matrix is exploited. The analysis of the Experimental Breeder Reactor-II test 8A showed that the maximum difference between temperatures predicted by this methodology and measurements was ∼6K.