ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Constantine P. Tzanos
Nuclear Technology | Volume 76 | Number 3 | March 1987 | Pages 337-351
Technical Paper | Fission Reactor | doi.org/10.13182/NT87-A33919
Articles are hosted by Taylor and Francis Online.
A method was developed for faster than real-time liquid-metal fast breeder reactor intermediate heat exchanger (IHX) analysis for purposes of continuous on-line data validation, plant state verification, and fault identification. The basic feature of this method is the utilization of spatial nodes whose sizes vary with time. The use of time-variant node sizes leads to adequately accurate solutions with a few nodes and at short computation times. Applications of this methodology to reference IHX problems with the IBM 3033 machine showed that the computation time for steady-state analysis was ∼6 ms. For transient analysis, a computation time that was one-sixteenth of the real transient time was achieved. This time can be further reduced if the special sparse structure of the system Jacobian matrix is exploited. The analysis of the Experimental Breeder Reactor-II test 8A showed that the maximum difference between temperatures predicted by this methodology and measurements was ∼6K.