ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Harald Moers, Hanns Klewe-Nebenius, Hans J. Ache
Nuclear Technology | Volume 76 | Number 1 | January 1987 | Pages 51-59
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33896
Articles are hosted by Taylor and Francis Online.
Aerosol samples consisting of fission products and elements of light water reactor structural materials were collected during laboratory-scale simulation of the heat-up phase of a core melt accident. The aerosol particles were formed in a steam atmosphere at temperatures of the melting charge between 1200 and 1900°C. The investigation of the samples by use of x-ray photoelectron spectroscopy (XPS) permitted the chemical speciation of the detected aerosol constituents silver, cadmium, indium, tellurium, iodine, and cesium. A comparison of the elemental analysis results obtained from XPS with those achieved from electron probe x-ray microanalysis revealed that aerosol particle surface and aerosol particle bulk are principally composed of the same elements. The compositions determined in dependence of the release temperature reflect the differing volatilities of the detected elements. Quantitative differences between the composition of surface and bulk have been observed only for those aerosol samples that were collected at higher melting charge temperatures. These samples show an enrichment of more volatile species at the particles’ surfaces. In order to obtain direct information on chemical species below the surface, selected samples were argonion bombarded. Changes in composition and chemistry were monitored by XPS, and the results were interpreted under consideration of possible influences of the sputter process on the surface composition.