ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Harald Moers, Hanns Klewe-Nebenius, Hans J. Ache
Nuclear Technology | Volume 76 | Number 1 | January 1987 | Pages 51-59
Technical Paper | Nuclear Safety | doi.org/10.13182/NT87-A33896
Articles are hosted by Taylor and Francis Online.
Aerosol samples consisting of fission products and elements of light water reactor structural materials were collected during laboratory-scale simulation of the heat-up phase of a core melt accident. The aerosol particles were formed in a steam atmosphere at temperatures of the melting charge between 1200 and 1900°C. The investigation of the samples by use of x-ray photoelectron spectroscopy (XPS) permitted the chemical speciation of the detected aerosol constituents silver, cadmium, indium, tellurium, iodine, and cesium. A comparison of the elemental analysis results obtained from XPS with those achieved from electron probe x-ray microanalysis revealed that aerosol particle surface and aerosol particle bulk are principally composed of the same elements. The compositions determined in dependence of the release temperature reflect the differing volatilities of the detected elements. Quantitative differences between the composition of surface and bulk have been observed only for those aerosol samples that were collected at higher melting charge temperatures. These samples show an enrichment of more volatile species at the particles’ surfaces. In order to obtain direct information on chemical species below the surface, selected samples were argonion bombarded. Changes in composition and chemistry were monitored by XPS, and the results were interpreted under consideration of possible influences of the sputter process on the surface composition.