ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Reviewers needed for NRC research proposals
The deadline is fast approaching for submitting an application to become a technical reviewer for the Nuclear Regulatory Commission’s fiscal year 2025 research grant proposals.
Kresna Atkhen, Georges Berthoud
Nuclear Technology | Volume 142 | Number 3 | June 2003 | Pages 270-282
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT03-A3389
Articles are hosted by Taylor and Francis Online.
Within the framework of severe reactor accident studies, we present experimental and numerical parametric studies on debris bed coolability. Data are provided by the SILFIDE multidimensional experimental facility at Electricité de France. The bed is composed of inductively heated steel sphere beads (diameters ranging from 2 to 7.18 mm) contained in a 50- × 60- × 10-cm vessel. Numerical computations are obtained with MC3D REPO developed by Commissariat à l'Energie Atomique.Because of heterogeneous power distribution within the bed, two definitions (mean and local) for the critical heat flux (CHF) are proposed. Even in the first case, the CHF was higher than the Lipinsky one-dimensional flux. As the power is being increased, temperature plateaus above saturation temperature are observed. An analysis is proposed, based on possible different hydrodynamic flow configurations occurring in postdryout regimes. In some experiments, some spheres were superficially molten and stacked together, but globally, the bed was still coolable.The influence of operational parameters such as bottom coolant injection, height of the water, fluidization of upper particles, and subcooled liquid injection on dryout phenomena and CHF values are also described.The MC3D-REPO calculations assuming a thermal equilibrium between the three phases gives results in accordance with experimental data.