ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Tunc Aldemir, Steven A. Arndt, Don. W. Miller
Nuclear Technology | Volume 76 | Number 2 | February 1987 | Pages 248-259
Technical Paper | Technique | doi.org/10.13182/NT87-A33879
Articles are hosted by Taylor and Francis Online.
Ionization chambers (ICs) are used in reactor protection instrument channels for monitoring neutron flux levels. These neutron sensors may degrade during the operation of the reactor through a change in their fill-gas characteristics. The comparison of the simulated and measured transient IC response to bias voltage perturbations can lead to the identification of these mechanisms. Once the mechanisms are identified, their impact on instrument channel response can be assessed by parametric studies. The charge transport model for such an identification and assessment process consists of three coupled nonlinear parabolic differential equations. The initial conditions for these equations are found by solving for the steady-state charge distribution in the IC fill gas prior to bias voltage perturbation. The space-time charge distribution in the IC is determined by a fully explicit-semi-implicit numerical scheme. The model is implemented to determine the transient response of a N2- and a xenon-filled IC to a 500- V bias voltage perturbation. In this implementation, good agreement is observed between the predicted and measured responses, with substantial improvement over the previously proposed models. The comparison of the numerical scheme to the interactive continuous system modeling program technique used in the previous studies indicates a twentyfold reduction in the number of time steps required for the simulation of a 5-ms transient. The model is also capable of quantifying the effect of fill-gas impurities on the transient IC response.