ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Mukesh Tayal, Ed Mischkot, Harve E. Sills, A. W. L. Segel
Nuclear Technology | Volume 76 | Number 2 | February 1987 | Pages 209-220
Technical Paper | Nuclear Fuel | doi.org/10.13182/NT87-A33875
Articles are hosted by Taylor and Francis Online.
The ELOCA-A code models the thermomechanical behavior of CANDU fuel elements during high-temperature transients such as loss-of-coolant accidents. Calculations include sheath and pellet temperatures, strains (including creep), sheath oxidation, and beryllium-assisted cracking. The ELOCA-A code was developed by adding axial nodes to the ELOCA·MK2 code, which assumes axially uniform temperatures and strains. Thus, it is now possible to study the effects of axial variations such as end flux peaking, axial variations in the microstructure of Zircaloy due to brazing, axially nonuniform heat transfer, and axially nonuniform cross section due to the presence of appendages. Other features of ELOCA-A include choice of Urbanic-Heidrick or Baker-Just correlations for sheath oxidation and double-sided oxidation of a failed sheath. The ELOCA-A code shows reasonable agreement with axial variations in hoop strains measured at Chalk River Nuclear Laboratories. Calculations for some arbitrary transients confirm that axial variations in initial microstructure and in neutron flux can have a significant effect on fuel temperatures and strains.