ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Budhi Sagar, Paul W. Eslinger, Robert G. Baca
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 338-349
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT86-A33846
Articles are hosted by Taylor and Francis Online.
Estimation of potential radionuclide releases from the waste package subsystem of a nuclear waste repository is required for two reasons: (a) to judge whether the engineered barrier system complies with the performance regulations prescribed by the U.S. Nuclear Regulatory Commission; and (b) to provide radionuclide source terms needed to predict the isolation performance of the natural barriers (i.e., geologic medium), which must be compared with the U.S. Environmental Protection Agency safety standard. A probabilistic approach developed at the Basalt Waste Isolation Project (BWIP) for the estimation of radionuclide releases from a proposed nuclear waste repository in basalt is presented. The central idea of this approach is that uncertainties in both the radionuclide transport parameters and the random nature of container failures impact the estimation of release rates. Details of the method are provided that account for both sources of uncertainty. Sample applications are presented that are based on preliminary data. Briefly, the BWIP methodology consists of (a) a container corrosion model, (b) a model describing the random sequence of container failures in time, (c) a stochastic transport model to obtain the probability distribution of releases from a single container failing at a specified time, and (d) a model to integrate the releases from the randomly failing containers in the repository.