ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Mario Dalle Donne*, Giacinto P. Tartaglia†
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 298-325
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33843
Articles are hosted by Taylor and Francis Online.
The multiphase coolant flow across the perforated immersion plate during a hypothetical core disruptive accident in a liquid-metal fast breeder reactor was simulated in a one-dimensional model. Extending from previous work with one-phase flow, water-air mixtures were used to test two-phase behavior. A large experimental matrix included systematic variation of the following parameters: geometry of the immersion plate (perforation ratio, number of the holes), height of the fluid head over the immersion plate, air volume fraction, size of the air bubbles, and acceleration of the fluid. The pressure drop across the immersion plate, the forces acting on the immersion plate and on the upper plate, acceleration and displacement of the piston, the air volume fraction, and the size of the air bubbles were measured in a wide range of Strouhal and acceleration numbers. The flow pattern downstream of the immersion plate was filmed with a high- speed camera. The following correlations were investigated: