ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Dov Ingman, Leib Reznik
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 261-282
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33841
Articles are hosted by Taylor and Francis Online.
It is necessary to obtain a detailed understanding of the behavior of reactor components performing at elevated temperatures at normal reactor operation, during off-normal transients, and in accident conditions. The currently used approaches do not sufficiently unify the probabilistic description (reliability), mechanical analysis (fracture mechanics, etc.), and engineering correlations for component life prediction (time-temperature parameter methods). The dynamic equations governing the evolution of the material damage based on the physical model of reliability are formulated in a unified manner. The model permits interrelating the concepts of material strength, accumulated damage, and reliability in regard to their dynamics. The model is applicable for static loading conditions as well as stress—and temperature—transients. The model validity is checked by comparing model predictions with the actual static and transient test data for the fast reactor fuel element cladding (Type 316 stainless steel).