ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DOE seeks proposals for AI data centers at Paducah
The Department of Energy’s Office of Environmental Management has issued a request for offer (RFO) seeking proposals from U.S. companies to build and power AI data centers on the DOE’s Paducah Site in Kentucky. Companies are being sought to potentially enter into one or more long-term leasing agreements at the site that would be solely funded by the applicants.
Dov Ingman, Leib Reznik
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 261-282
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33841
Articles are hosted by Taylor and Francis Online.
It is necessary to obtain a detailed understanding of the behavior of reactor components performing at elevated temperatures at normal reactor operation, during off-normal transients, and in accident conditions. The currently used approaches do not sufficiently unify the probabilistic description (reliability), mechanical analysis (fracture mechanics, etc.), and engineering correlations for component life prediction (time-temperature parameter methods). The dynamic equations governing the evolution of the material damage based on the physical model of reliability are formulated in a unified manner. The model permits interrelating the concepts of material strength, accumulated damage, and reliability in regard to their dynamics. The model is applicable for static loading conditions as well as stress—and temperature—transients. The model validity is checked by comparing model predictions with the actual static and transient test data for the fast reactor fuel element cladding (Type 316 stainless steel).