ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
William J. Garland, Simon H. Pang
Nuclear Technology | Volume 75 | Number 3 | December 1986 | Pages 239-260
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33840
Articles are hosted by Taylor and Francis Online.
The thermohydraulic stability of the Canada deuterium uranium (CANDU)-600 heat transport system was investigated from a theoretical, numerical, and experimental point of view. Simple theoretical models, used to provide phenomenological insight as a guide to the numerical and experimental studies, showed that a major form of positive feedback existed through an interplay of circuit flow, outlet header void fraction, and outlet header pressure. The flow and pressure dynamics proved to be good indicators of system stability. System computer codes (SOPHT, FIREBIRD, and HYDNA) were used for the detailed modeling of system dynamics. These codes showed that neither Ledinegg nor parallel channel instabilities occur in CANDU-600 nuclear reactors. Loop stability was predicted under all conditions with the reactor outlet header interconnect line in service as designed. With the interconnect line disconnected, loop instability was predicted for a narrow outlet header quality range (1 to 8%). These predictions were fully confirmed by semiscale experimental loop tests and plant commissioning tests.