ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Giovanni Bidoglio, Alfonso De Plano
Nuclear Technology | Volume 74 | Number 3 | September 1986 | Pages 307-316
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT86-A33833
Articles are hosted by Taylor and Francis Online.
Investigation of reactions between neptunium and soil samples representative of the saline area around the Gorleben salt dome (Federal Republic of Germany) was conducted to obtain an understanding of the transport mechanism of neptunium in saturated brine aquifers. Leaching of 237Np-doped glasses with brine under oxic conditions resulted in the release of soluble species of Np(V). Adsorption parameters obtained from the application of nonlinear sorption isotherms to static experiments were used to interpret the migration of neptunium through soil columns. The existence of two different adsorption sites reacting with neptunium at different rates was postulated. Retardation factors under oxic and anoxic conditions were measured. In anoxic environments such as those found in undisturbed repository horizons, more neptunium activity was fixed by the soil.