ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Tunc Aldemir, Don W. Miller
Nuclear Technology | Volume 74 | Number 3 | September 1986 | Pages 267-271
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33829
Articles are hosted by Taylor and Francis Online.
The availability of power range monitoring systems (PRMSs) is important to reliable and safe operation of nuclear plants, since the primary functions of PRMSs are to provide control signals and generate a trip signal if the neutron flux level exceeds preset values during operation. The PRMS can be inspected for degraded modes of neutron channel failure with conventional methods during the time the plant is shut down. Recently, techniques have been developed for in situ inspection of neutron flux channels. The effect of in situ surveillance of PRMS channels on the channel and system availability is investigated as a function of the probability of detecting the degraded channels and the frequency of inspection. The PRMS and its subsystems are modeled as M-out-of-N systems with identical and statistically independent three-state units. It is shown that the single channel unavailability can be appreciably decreased (4 to 10 day/yr) using in situsurveillance techniques. The improvement in PRMS availability in pressurized water reactors, however, is predicted to be small (< 1.5 h/yr) because of channel redundancy. The effect of these techniques on PRMS availability in boiling water reactors is virtually unobservable.