ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Tunc Aldemir, Don W. Miller
Nuclear Technology | Volume 74 | Number 3 | September 1986 | Pages 267-271
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33829
Articles are hosted by Taylor and Francis Online.
The availability of power range monitoring systems (PRMSs) is important to reliable and safe operation of nuclear plants, since the primary functions of PRMSs are to provide control signals and generate a trip signal if the neutron flux level exceeds preset values during operation. The PRMS can be inspected for degraded modes of neutron channel failure with conventional methods during the time the plant is shut down. Recently, techniques have been developed for in situ inspection of neutron flux channels. The effect of in situ surveillance of PRMS channels on the channel and system availability is investigated as a function of the probability of detecting the degraded channels and the frequency of inspection. The PRMS and its subsystems are modeled as M-out-of-N systems with identical and statistically independent three-state units. It is shown that the single channel unavailability can be appreciably decreased (4 to 10 day/yr) using in situsurveillance techniques. The improvement in PRMS availability in pressurized water reactors, however, is predicted to be small (< 1.5 h/yr) because of channel redundancy. The effect of these techniques on PRMS availability in boiling water reactors is virtually unobservable.