ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Gilles Champion, Josette Forestier, Thérèse Vergnaud
Nuclear Technology | Volume 74 | Number 1 | July 1986 | Pages 14-26
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33815
Articles are hosted by Taylor and Francis Online.
The efforts made by Electricité de France to reduce exposure from the two-component neutrongamma radiation fields inside the pressurized water reactor (PWR) building are described. Most of the attention has been focused on the problem of neutron exposure relative to the problem of achieving a highly efficient confinement within the reactor cavity and the state of the art of personnel neutron dosimetry. A description of the general neutron calculation scheme that links the characteristics of the neutron fields escaping from the reactor vessel to the dose equivalent rate cartographies inside the reactor building is provided. Numerous measurements have been carried out to check the reference radiation sources involved in the calculation scheme and its predictions, increasing confidence in the calculational results. During the design of neutron shielding, it is necessary to take into account many requirements, particularly those of accessibility, safety, and normal operation. Some shielding materials commonly used on French PWRs are presented. The emphasis placed on the evolution of shieldings designed to prevent irradiation through the three main weaknesses of the primary concrete shield (access pit, primary bunkers, and refueling pool bottom) shows that they should become increasingly sophisticated. A comparison between the former shielding designs for three-loop PWRs and the latter for four-loop PWRs is made for this purpose.