ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Subhash Chandra
Nuclear Technology | Volume 74 | Number 2 | August 1986 | Pages 189-194
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A33803
Articles are hosted by Taylor and Francis Online.
Two-phase dispersed-flow regimes have often been hypothesized for the disassembly analysis of hypothetical core disruptive accidents in fast reactors. The influence of particulate phase size on the power transient is examined. In general it is observed that the bigger the particle size the larger the energy release during the disassembly phase. The dependence of the power transient on the particle size itself depends on the drag force expression. The Stokes term and form factor of the drag force try to enforce a somewhat different particle size dependence. A flatter flux distribution decreases this dependence significantly. The choice of the equation of state also affects this dependence.