ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Alois Bleier, Karl Heinz Neeb, Eike Gelfort, Joachim Mischke
Nuclear Technology | Volume 74 | Number 2 | August 1986 | Pages 152-163
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33800
Articles are hosted by Taylor and Francis Online.
Tritium inventories and tritium distribution have been determined in boron glass absorber rods discharged from a pressurized water reactor first-cycle core and in spent boron carbide (B4C) control rods from a boiling water reactor. The total tritium inventory in the boron glass absorber rods from the Stade nuclear reactor amounts to ∼8.0×1010 Bq (2.2 Ci) per rod. Of this, 99.6% was fixed in the boron glass itself and 0.4% in the Al2O3 pellets. The 4×10−3% fractions in the tube cladding and support pipe and the 1×10−1% fraction in the fill gas accounted for an insignificant part of the total tritium inventory of the rod. This experimentally determined tritium inventory was a factor of 5 larger than that suggested by the calculated estimate. The discrepancy between analyzed and calculated values can be explained by tritium formation from lithium impurities in the boron glass, where a 30-ppm lithium content would be adequate for this tritium inventory to be generated by the reaction 6Li(n, α)3H. Evaluation of the B4C control rods from the Lin-gen nuclear reactor after 3 yr of operation gave a 3.2×1010 Bq (0.85-Ci) tritium inventory per B4C rod, while the total tritium inventory for a control rod assembly containing 60 B4C rods was ∼1.9×1012 Bq (50 Ci). The tritium generated was essentially bound 100% in the B4C, since the hulls contained only 6×10−3% and the fill gas only 2×10−4%.