ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Satoshi Suzuki, Kohyu Fukunishi, Shoichi Kishi, Yuichiro Yoshimoto, Kunikazu Kishimoto
Nuclear Technology | Volume 74 | Number 2 | August 1986 | Pages 132-138
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33798
Articles are hosted by Taylor and Francis Online.
A multivariable autoregressive (MAR) method is applied to the core stability estimation of a boiling water feactor-5 operation. Noise data measured during steady-state operations at startup tests are used. In this method, the closed loop transfer function from reactor pressure to reactor power is identified from reactor noise data and transformed into an impulse response function. The decay ratio representing stability characteristics is evaluated from this function. The variation range of decay ratio estimates obtained by this method is sufficiently small, if the analyzing conditions are appropriately selected. The value of the decay ratio is 0.23 during natural circulation and decreases with core flow, reaching close to zero at the rated power. A similar power dependence for the decay ratio is seen in results from a core stability analysis code. The MAR method is a useful tool for stability estimation, even if no external disturbance tests are conducted.