ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Satoshi Suzuki, Kohyu Fukunishi, Shoichi Kishi, Yuichiro Yoshimoto, Kunikazu Kishimoto
Nuclear Technology | Volume 74 | Number 2 | August 1986 | Pages 132-138
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33798
Articles are hosted by Taylor and Francis Online.
A multivariable autoregressive (MAR) method is applied to the core stability estimation of a boiling water feactor-5 operation. Noise data measured during steady-state operations at startup tests are used. In this method, the closed loop transfer function from reactor pressure to reactor power is identified from reactor noise data and transformed into an impulse response function. The decay ratio representing stability characteristics is evaluated from this function. The variation range of decay ratio estimates obtained by this method is sufficiently small, if the analyzing conditions are appropriately selected. The value of the decay ratio is 0.23 during natural circulation and decreases with core flow, reaching close to zero at the rated power. A similar power dependence for the decay ratio is seen in results from a core stability analysis code. The MAR method is a useful tool for stability estimation, even if no external disturbance tests are conducted.