ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
M. J. Apted, G. L. McVay, J. W. Wald
Nuclear Technology | Volume 73 | Number 2 | May 1986 | Pages 165-178
Technical Paper | Performance of Borosilicate Glass High-Level Waste Forms in Disposal System / Radioactive Waste Management | doi.org/10.13182/NT86-A33781
Articles are hosted by Taylor and Francis Online.
The release behavior of uranium, plutonium, and neptunium from a defense waste reference glass was studied at 90 °C, alone and in the presence of ductile iron. Deionized water and simulated groundwaters for repositories in basalt and salt were used as test solutions. The initial surface area of glass to volume of solution was 10 m−1; the surface area of iron, where included, was equal to that of the glass sample. Solution samples were removed at regular intervals over 56 days, and actinide concentrations in unfiltered and 1.8-nm filtered (i.e., dissolved) portions were analyzed. The release behavior of uranium, plutonium, and neptunium did not show any consistent relationship to each other in any of the solutions, casting doubt on the use of uranium as a “master” indicator of actinide release. The presence of iron increased the initial rate of actinide release from the glass for all solutions, although the concentration of truly soluble actinides decreased. The difference is attributable to the formation of colloidal actinides. The actinide concentration in the filtered samples closely approaches the known solubility concentrations for hydrate oxides of these elements, suggesting a solubility-limiting control to the release of actinides from glass for time periods greater than several months.