ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
M. J. Apted, G. L. McVay, J. W. Wald
Nuclear Technology | Volume 73 | Number 2 | May 1986 | Pages 165-178
Technical Paper | Performance of Borosilicate Glass High-Level Waste Forms in Disposal System / Radioactive Waste Management | doi.org/10.13182/NT86-A33781
Articles are hosted by Taylor and Francis Online.
The release behavior of uranium, plutonium, and neptunium from a defense waste reference glass was studied at 90 °C, alone and in the presence of ductile iron. Deionized water and simulated groundwaters for repositories in basalt and salt were used as test solutions. The initial surface area of glass to volume of solution was 10 m−1; the surface area of iron, where included, was equal to that of the glass sample. Solution samples were removed at regular intervals over 56 days, and actinide concentrations in unfiltered and 1.8-nm filtered (i.e., dissolved) portions were analyzed. The release behavior of uranium, plutonium, and neptunium did not show any consistent relationship to each other in any of the solutions, casting doubt on the use of uranium as a “master” indicator of actinide release. The presence of iron increased the initial rate of actinide release from the glass for all solutions, although the concentration of truly soluble actinides decreased. The difference is attributable to the formation of colloidal actinides. The actinide concentration in the filtered samples closely approaches the known solubility concentrations for hydrate oxides of these elements, suggesting a solubility-limiting control to the release of actinides from glass for time periods greater than several months.