ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Heinz Bachhuber, Kurt Bunzl, Wolfgang Schimmack
Nuclear Technology | Volume 72 | Number 3 | March 1986 | Pages 359-371
Technical Paper | Radiation Protection and Health Physics Practices and Experience in Operating Reactors Internationally / Analyse | doi.org/10.13182/NT86-A33775
Articles are hosted by Taylor and Francis Online.
To obtain information on the spatial variability of the sorption properties of a cultivated soil, the distribution coefficients Kd of the radionuclides 137Cs, 65Zn, 85Sr, 57Co, 109Cd, 141Ce, 103Ru, 95mTc, and 131I were determined in batch experiments. Fifty soil samples were taken along each diagonal from a cultivated field (150 × 100 m) of Parabrown earth soil (Alfisol), and four replicate Kd measurements were performed for each soil sample in order to separate the spatial variability of the Kd values from the experimental error. The results show that the Kd values of the above radionuclides (with the exception of 57Co) are not distributed randomly along each diagonal, but exhibit statistically significant trends or maxima and minima. The distribution coefficients increase on average in the sequence Tc < I < Sr < Ru < Cd ≃ Zn < Co < Ce < Cs. The spatial variability of the Kd values increases in the sequence Sr < Cs < Cd < I < Co ≃ Zn ≃ Tc < Ru < Ce by about one order of magnitude. For the soil investigated, if an error in the mean Kd value of 20 % is tolerated, at the 95 % confidence level, the minimum number of soil samples to be taken can be estimated for the above radionuclides as: strontium, 2; cesium, 4; cadmium, 8; iodine, 13; cobalt, 15; zinc, 15; technetium, 15; ruthenium, 23; and cerium, 140. Correlation analysis revealed that in many cases the Kd values of different radionuclides are closely correlated, i.e., that at locations, where one radionuclide exhibited relatively high Kd values, another showed either correspondingly high values (positive correlation) or low values (negative correlation). It is shown that in many cases these correlations are the result of the significant (positive or negative) correlation of the Kd value with the pH of the soil solution.