ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Norman P. Baumann, Willard G. Winn
Nuclear Technology | Volume 72 | Number 3 | March 1986 | Pages 353-358
Technical Paper | Radiation Protection and Health Physics Practices and Experience in Operating Reactors Internationally / Analyse | doi.org/10.13182/NT86-A33774
Articles are hosted by Taylor and Francis Online.
A long-lived gamma source, containing 370 MBq of 232U (72 yr) and 110 MBq of 228Th (1.9 yr), was developed as a permanent replacement for neutron-activated 24Na (15-h) sources that have been used in a 2D(γ,n)1H tritiated water detector. The 228Th, which will build up to 340 MBq in 10 yr and then decay in equilibrium with 232U, emits copious 2614-keV gamma rays for the (γ, n) process. Competing (α, n) backgrounds are reduced by placing the uranium/thorium source in a gold matrix to provide threshold and coulomb barriers against the reaction. The detection limits (∼0.0l-ml D2O) for typical stainless steel pipes (∼2-cm diam) measured with the uranium/thorium source are almost as low as those for comparable 24Na sources, which do not produce (α,n) backgrounds. This minor sensitivity loss can be offset by longer counting times, if necessary. Lower personnel exposure is realized with the new source. Overall, the practical advantages of using a longer lived source strongly favor the use of 232U/228Th instead of 24Na.