ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
Emilio Tassoni, Ferruccio Gera
Nuclear Technology | Volume 72 | Number 1 | January 1986 | Pages 89-98
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT86-A33757
Articles are hosted by Taylor and Francis Online.
Dissipation of the decay heat generated by high-level radioactive waste without producing unacceptable temperatures is one of the main problems related to geological disposal. An in situ heating experiment has been carried out in a clay quarry in the area of Monterotondo in order to discover the temperature field and the thermal effects caused by simulated high-level radioactive waste emplaced in an argillaceous rock. The experiment has been carried out by feeding an electric heater buried 6.4 m deep in a clay formation and by measuring temperature rises in boreholes drilled between 50 and 200 cm from the thermal source. The theoretical temperature rises in the clay, calculated by means of the Belgian MPGST code, have been compared with the experimental results. The temperature rises measured in the clay agree quite well with the theoretical values and show that the clay is a homogeneous medium. It was concluded that (a) the thermal conduction code seems sufficiently accurate to forecast the temperature rise caused in the clay by decay heat generation and (b) the thermal conductivity deduced by a comparison between experimental and theoretical temperature rises ranges between 0.015 and 0.017 W·cm−1°C−1. A laboratory-automated method, using needle and cylindrical probes, has also been designed to measure the thermal conductivity of clay samples. The probes are stainless steel cylinders, containing a heating resistance and a thermistor to measure the temperature rise. The method has been used to measure the thermal conductivity of clay samples coming from different Italian quarries. The thermal conductivity measured on the clay sedimentation plane is higher than that measured along the direction perpendicular to it. The clay thermal conductivity decreases as the water content rises.