ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Lawrence E. Wiles, Thomas L. George
Nuclear Technology | Volume 142 | Number 1 | April 2003 | Pages 77-91
Technical Paper | RETRAN | doi.org/10.13182/NT03-A3375
Articles are hosted by Taylor and Francis Online.
GOTHIC version 7.0 was used to model five tests that were conducted in the Nuclear Power Engineering Corporation facility in Japan. The tests involved steam and helium injection into a preheated, spray-moderated, 1/4-scale model of a pressurized water reactor dry containment. Comparison of GOTHIC predictions to measured data for pressure, vapor temperatures, structure surface temperatures, and helium concentrations provided the opportunity to evaluate methods for modeling gas dispersion, drop heat and mass transfer, and surface heat transfer.The test facility includes three floors. The lower two floors are partitioned into a variety of rooms that simulate the lower regions of the modeled containment. On the upper floor, rooms that simulate the steam generator enclosures and the pressurizer enclosure extend into the dome, which represents about two-thirds of the total volume of the containment.The GOTHIC model was defined with 30 control volumes using a mix of lumped parameter volumes and subdivided volumes that employ a three-dimensional mesh. Each volume included several thermal conductors to model the various structures. More than 100 flow paths were used to model the hydraulic connections.Comparison of predictions to data showed that enhanced grid resolution in the vicinity of the steam-helium release point served to limit dispersion of the steam-helium plume. The data comparisons also suggested that spray effectiveness was reduced by drop impact with the containment wall and by the high drop concentration. The data comparisons further suggested that the presence of condensation, sprays, splashing, and other wetting mechanisms should be considered to obtain a reasonable estimate of the effect of liquid films on the structure surfaces.