ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Samir M. Sami
Nuclear Technology | Volume 72 | Number 1 | January 1986 | Pages 7-23
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33747
Articles are hosted by Taylor and Francis Online.
A digital computer approach for predicting the dynamic response of surge tanks is presented. The applications of different models are presented for analyzing the primary pressure transients of CANDU reactors. Conservation equations for deformable control volume have been employed to describe the flow inside both of the closed distinct regions (phases). In this model, the upper region can be either in the superheated state or two-phase saturated state. The lower region can be in the subcooled state or two-phase saturated state. Energy and mass transfer processes occurring inside the surge tanks have been investigated and determined under various operating conditions. These processes are spray condensation, wall condensation, vapor flashing, heat transfer at interface, and heat transfer from heaters. Numerical results showed that this model favorably predicted the pressurizer pressure when compared with those calculated by adiabatic and equilibrium models employed in the SOPHT code and with data obtained from the Gentilly-2 site and Bruce NGS-A.