ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Samir M. Sami
Nuclear Technology | Volume 72 | Number 1 | January 1986 | Pages 7-23
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33747
Articles are hosted by Taylor and Francis Online.
A digital computer approach for predicting the dynamic response of surge tanks is presented. The applications of different models are presented for analyzing the primary pressure transients of CANDU reactors. Conservation equations for deformable control volume have been employed to describe the flow inside both of the closed distinct regions (phases). In this model, the upper region can be either in the superheated state or two-phase saturated state. The lower region can be in the subcooled state or two-phase saturated state. Energy and mass transfer processes occurring inside the surge tanks have been investigated and determined under various operating conditions. These processes are spray condensation, wall condensation, vapor flashing, heat transfer at interface, and heat transfer from heaters. Numerical results showed that this model favorably predicted the pressurizer pressure when compared with those calculated by adiabatic and equilibrium models employed in the SOPHT code and with data obtained from the Gentilly-2 site and Bruce NGS-A.