ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Samir M. Sami
Nuclear Technology | Volume 72 | Number 1 | January 1986 | Pages 7-23
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33747
Articles are hosted by Taylor and Francis Online.
A digital computer approach for predicting the dynamic response of surge tanks is presented. The applications of different models are presented for analyzing the primary pressure transients of CANDU reactors. Conservation equations for deformable control volume have been employed to describe the flow inside both of the closed distinct regions (phases). In this model, the upper region can be either in the superheated state or two-phase saturated state. The lower region can be in the subcooled state or two-phase saturated state. Energy and mass transfer processes occurring inside the surge tanks have been investigated and determined under various operating conditions. These processes are spray condensation, wall condensation, vapor flashing, heat transfer at interface, and heat transfer from heaters. Numerical results showed that this model favorably predicted the pressurizer pressure when compared with those calculated by adiabatic and equilibrium models employed in the SOPHT code and with data obtained from the Gentilly-2 site and Bruce NGS-A.