ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Hans Jordan, Philip M. Schumacher, Vladimir Kogan
Nuclear Technology | Volume 72 | Number 2 | February 1986 | Pages 148-157
Technical Paper | Nuclear Safety | doi.org/10.13182/NT86-A33737
Articles are hosted by Taylor and Francis Online.
A two-component aerosol system is investigated using the MSPEC code, which models the dynamic behavior of particle composition as a function of particle size. The predicted aerosol concentration behavior is shown to be sensitive to several parameters and model choices, in contrast to the situation for singlecomponent aerosol systems, where these parameters and models appear to play a distinctly uncritical role. In addition, the predicted aerosol concentration behavior is shown to significantly diverge from that predicted by MSPEC using a “single-component” model mode that assumes uniform particle composition across the size distribution. This latter mode is common to codes presently used for nuclear accident source term evaluations. These findings point to the need for an expanded experimental data base, both to validate multiple-component aerosol behavior codes and to supply the necessary data to drive them.