ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Duke Energy submits an ESP application to the NRC
Following up on an October announcement on plans to invest more heavily in nuclear power, Duke Energy closed out 2025 by submitting an early site permit application to the Nuclear Regulatory Commission. This ESP application is for a site near the Belews Creek Steam Station, a coal and natural gas plant in Stokes County, N.C., where Duke has been pursuing a new nuclear project for two years.
Charles W. Forsberg
Nuclear Technology | Volume 72 | Number 2 | February 1986 | Pages 121-134
Technical Paper | Fission Reactor | doi.org/10.13182/NT86-A33735
Articles are hosted by Taylor and Francis Online.
A new type of boiling water reactor (BWR)—the process inherent ultimate safety (PIUS) BWR—has been conceived. A PIUS BWR is an advanced BWR that differs from the typical BWR in that a prestressed concrete reactor vessel (PCRV) with special internals replaces the conventional pressure vessel, emergency core cooling system, containment shell, spent fuel storage ponds, and most other components on the nuclear island. The reactor core and balance of plant are similar to current BWR designs. This approach effectively eliminates the possibility of reactor core meltdown and simplifies plant design. The PIUS BWR does not require operation of any mechanical or electrical components in any emergency for reactor shutdown or afterheat cooling, nor does it depend on any equipment outside the PCRV. The PCRV contains a natural circulation BWR; cool, borated water for emergency core cooling; a mechanism “X” that allows the cool, borated water to enter the reactor core if there is insufficient water in the core; and a mechanism “Y” that limits core power levels to available cooling capabilities.