ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Philipp Schmuck
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 314-325
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33729
Articles are hosted by Taylor and Francis Online.
An efficient and simple method to compute one-dimensional steady-state and transient turbulent single-phase flows across singularities (e.g., sudden contractions or expansions in ducted flows) is presented. This method accounts for the effective inertia of a fluid at a constriction and the irreversible pressure losses caused by recirculation zones generated near a singularity. For selected singularities of technical interest, algebraic expressions for the equivalent inertia lengths and the hydraulic resistance coefficients are presented. The implementation of the method into one-, two-, and three-dimensional numerical fluid dynamics codes is explained and the limitations of the method are discussed. The method is also extended to two-phase flow where additional flow parameters characterizing the momentum exchange between the phases play a role.