ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Samuel Carmona, Shimon Yiftah
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 289-295
Technical Paper | Material | doi.org/10.13182/NT85-A33727
Articles are hosted by Taylor and Francis Online.
Complete evaluations of the (n,2n) and (n,3n) reaction cross sections were carried out for the stable isotopes of lead and for natural lead, that element being a potential neutron amplifier for fusion blankets. The method of computation used is based on the Segev simple formalism for compound nucleus decay without branching. This method, which was already checked for 204Pb, was used for cross-section computation for all other stable lead isotopes. From these results, evaluated cross sections could be derived for natural lead. The results of the evaluations were in good agreement with experimental data. Small discrepancies with the measured data for 204Pb, 207Pb, and 208Pb at low excitation energies above threshold are overcome through the introduction of an “effective” threshold energy slightly higher than the real one. This single correction is sufficient for matching the shape of the evaluated curves to the measured data over the entire energy range for the second neutron emission.