ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Peter Klumpp
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 258-271
Technical Paper | Economic | doi.org/10.13182/NT85-A33725
Articles are hosted by Taylor and Francis Online.
The main reasons for conducting research and development (R&D) on an advanced pressurized water reactor (APWR) with a high conversion ratio include an awareness of the limited availability of natural nuclear fuels, the low degree of utilization of this resource in present light water reactors (L WRs), and the necessary high capital investments in breeder reactor systems with high fuel utilization. Consequently, these R&D efforts, on the one hand, must greatly increase the utilization of uranium compared to the level achieved in L WR technology and, on the other hand, must reduce the capital investment compared to what is required in breeder reactor technology. If these criteria can be met economically, a future role would be indicated for APWRs as an interim technology during the transition from LWRs to breeder reactors and as a supplement to the latter line in a breeder/APWR symbiosis. It appears that an APWR will use nuclear resources economically but will also create higher costs for an electric utility than current LWR technology.