ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Anton Bayer
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 217-227
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33720
Articles are hosted by Taylor and Francis Online.
As a continuation of the “German Risk Study: Phase A,” further plant-oriented analysis has been performed and the off-site accident consequence model has been partially improved. The plant-oriented analysis carried out at the Karlsruhe Nuclear Research Center has been focused on two release categories, namely FK2 (core meltdown followed by immediate release of radionuclides from the leaking containment) and FK6 (core meltdown followed by late release of radionuclides as a result of failure due to overpressure in the containment). The thermohydraulic processes in the molten mass and the behavior of the fission and activation products released from the molten mass are considered in a more realistic way. The improvements of the off-site accident consequence model relate mainly to a more realistic modeling of the deposition and resuspension processes, to the ingestion submodel, and to dose factors. The results show that the improvements of the off-site accident consequence model do not change the final results dramatically; the model rather draws a more realistic picture of the interrelated processes, and consequently allows the application of the model to other problems in the nuclear field as well. From the investigations belonging to the plant-oriented analysis it appears, however, that the releases to be expected from postulated accidents are remarkably lower. Consequently, the risk is lower than assessed in Phase A of this study.