ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Dirk Wilhelm, Leonhard Meyer
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 162-172
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33717
Articles are hosted by Taylor and Francis Online.
The flow dynamics in the upper core structure (UCS) during the expansion phase of a liquid-metal fast breeder reactor core disruptive accident were investigated experimentally and numerically. A simulant material experiment was designed to verify some of the thermal-hydraulic models in SIMMER-II. The experiments showed the large effect of the heat transfer in the UCS and the relatively small effect of friction. The reduction of the work potential of the expanding fuel by the presence of the UCS is shown as a function of the initial pressure and the temperature difference between the core and the UCS, both for simulant materials and UO2 fuel. It is described how the experimental data can be extrapolated to prototypical conditions, which phenomena modeled in the code predictions of SIMMER-II are different for simulant and prototypical transients, and how the experimental results compare to effects of prototypical phenomena that could not be modeled in the experiment.