ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Dirk Wilhelm, Leonhard Meyer
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 162-172
Technical Paper | Nuclear Safety | doi.org/10.13182/NT85-A33717
Articles are hosted by Taylor and Francis Online.
The flow dynamics in the upper core structure (UCS) during the expansion phase of a liquid-metal fast breeder reactor core disruptive accident were investigated experimentally and numerically. A simulant material experiment was designed to verify some of the thermal-hydraulic models in SIMMER-II. The experiments showed the large effect of the heat transfer in the UCS and the relatively small effect of friction. The reduction of the work potential of the expanding fuel by the presence of the UCS is shown as a function of the initial pressure and the temperature difference between the core and the UCS, both for simulant materials and UO2 fuel. It is described how the experimental data can be extrapolated to prototypical conditions, which phenomena modeled in the code predictions of SIMMER-II are different for simulant and prototypical transients, and how the experimental results compare to effects of prototypical phenomena that could not be modeled in the experiment.