ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Helmut Jacobs
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 131-144
Technical Paper | Fusion | doi.org/10.13182/NT85-A33715
Articles are hosted by Taylor and Francis Online.
Modifications of Rayleigh-Taylor instability growth by a gradual density increase instead of a step increase, finite fluid thickness, convection (or ablation), three-dimensional disturbances, nearby stable stratification or fixed boundaries, and nonlinear saturation are quantitatively assessed in typical model cases. To account for gradual density transitions, novel approximate but conservative correlations are given that can replace a hitherto widely used incorrect relation. The stabilizing effects of stable stratification, a fixed boundary (below), and a free surface (above) close to the instability zone are discussed in detail for the first time. For the effect of convection a new and simple derivation of Bodner’s formula is presented, which reveals that the formula describes a fictitious effect due to observation of the disturbance at a moving location. A half-analytical procedure is proposed that allows an account at the same time for several effects resulting from the actual density profile and the possible variations of this profile and its acceleration with time, for example, during ablative acceleration of thin foils.