ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K., Japan to extend decommissioning partnership
The U.K.’s Sellafield Ltd. and Japan’s Tokyo Electric Power Company have pledge to continue to work together for up to an additional 10 years, extending a cooperative agreement begun in 2014 following the 2011 tsunami that resulted in the irreparable damage of TEPCO’s Fukushima Daiichi plant.
Cornelis H. M. Broeders
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 96-110
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33712
Articles are hosted by Taylor and Francis Online.
The incentive of the Kernforschungszentrum Karlsruhe (KfK) advanced pressurized water reactor (APWR) investigations is the improvement of uranium utilization in a modem Federal Republic of Germany pressurized water reactor (PWR) by replacement of the core with a high converting one. The high conversion ratio is obtained by using mixed oxide (UPu)O2 in a tight light-water-moderated triangular lattice. The harder neutron spectrum leads to higher conversion ratios, to higher fissile enrichment and fissile inventories, and to worse reactivity behavior after coolant density changes. That means that core modification of the PWR shifts its neutron physics properties in the direction of fast reactor characteristics. The analysis of available calculational methods for fast and thermal reactors showed that neither the WIMS/D code, reliable for thermal reactors, nor the approved KAPROS fast reactor code can adequately predict the reactivity of an APWR in all configurations between normal and a totally voided core. A newly developed procedure, KARBUS, within the KAPROS fast reactor code system combines the advantageous features of thermal and fast reactor calculational methods. The preliminary validation for fast, epithermal, and thermal lattices, including burnup behavior, indicates that KARBUS is an adequate tool for the APWR investigations at present. Improvements in the detailed analysis of a final APWR design and of APWR neutron physics experiments in progress are briefly discussed. Parametric calculations for a simplified model indicate that current KfK proposals for homogeneous and heterogeneous APWR cores are nearly optimum concerning the competitive properties conversion ratio and void effect in a critical core poisoned by reactor control or by fission products.