ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Maurizio Bottoni, Burkhardt Dorr, Christoph Homann, Dankward Struwe
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 43-67
Technical Paper | Fission Rector | doi.org/10.13182/NT85-A33709
Articles are hosted by Taylor and Francis Online.
With the BACCHUS-3D/SP computer program, the steady-state and transient thermal-hydraulic behavior of single-phase coolant flow in a reactor bundle geometry and the thermodynamics of the pins can be described in a three-dimensional geometrical representation that relies on the porous-medium concept. The geometrical representation of the bundle, the mathematical modeling of the physical coolant behavior, and the numerical treatment of the governing equations with the implicit continuous-fluid Eulerian technique and details of their numerical solution are described. Experiments in heated and unheated 19-pin bundles with sodium and water as a coolant are used to check the physical models for the turbulent exchange of momentum and enthalpy between adjacent control volumes in the bundle. Further code validation has been made with the computation of experiments performed in 7- and 37-pin bundles and in a 60-deg sector of the SNR Mk la 169-pin bundle. The comparison between computed and experimental data offers insight into the interpretation of these experiments and allows an assessment of the advantages and shortcomings of the porous medium approach.