ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Maurizio Bottoni, Burkhardt Dorr, Christoph Homann, Dankward Struwe
Nuclear Technology | Volume 71 | Number 1 | October 1985 | Pages 43-67
Technical Paper | Fission Rector | doi.org/10.13182/NT85-A33709
Articles are hosted by Taylor and Francis Online.
With the BACCHUS-3D/SP computer program, the steady-state and transient thermal-hydraulic behavior of single-phase coolant flow in a reactor bundle geometry and the thermodynamics of the pins can be described in a three-dimensional geometrical representation that relies on the porous-medium concept. The geometrical representation of the bundle, the mathematical modeling of the physical coolant behavior, and the numerical treatment of the governing equations with the implicit continuous-fluid Eulerian technique and details of their numerical solution are described. Experiments in heated and unheated 19-pin bundles with sodium and water as a coolant are used to check the physical models for the turbulent exchange of momentum and enthalpy between adjacent control volumes in the bundle. Further code validation has been made with the computation of experiments performed in 7- and 37-pin bundles and in a 60-deg sector of the SNR Mk la 169-pin bundle. The comparison between computed and experimental data offers insight into the interpretation of these experiments and allows an assessment of the advantages and shortcomings of the porous medium approach.