ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Alexander P. Murray, David A. Eckhardt, Sharon L. Weisberg
Nuclear Technology | Volume 71 | Number 2 | November 1985 | Pages 482-496
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33700
Articles are hosted by Taylor and Francis Online.
Westinghouse Electric Corporation (WEC) has developed five chemical processes for nuclear decontamination, based on extensive experimental testing using radioactive pressurized water reactor (PWR) and boiling water reactor (BWR) samples. The dilute chemical decontamination process offers the best combination of effectiveness, low corrosion, low waste volume, and fast field implementation time. This is an alternating multistep process. For PWRs, an oxidation treatment is necessary. Projected contact decontamination factors (DFs) are ∼50 on plant Inconel surfaces, with comparable results on stainless steel. Actual test DFs have exceeded 500 in the process test loop. For BWRs, an oxidation step is unnecessary, but very beneficial. DFs of 10 to 20 are achieved without an oxidation treatment. Full process DFs exceed 500 when the oxidation treatment is included. Low corrosion rates are observed, without any adverse effects. Only solid waste is produced by the process. WEC has fabricated a trailer-mounted application system for this process, and is offering it as a decontamination service to commercial customers.83 (Feb. 1984).