ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Alexander P. Murray, David A. Eckhardt, Sharon L. Weisberg
Nuclear Technology | Volume 71 | Number 2 | November 1985 | Pages 482-496
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33700
Articles are hosted by Taylor and Francis Online.
Westinghouse Electric Corporation (WEC) has developed five chemical processes for nuclear decontamination, based on extensive experimental testing using radioactive pressurized water reactor (PWR) and boiling water reactor (BWR) samples. The dilute chemical decontamination process offers the best combination of effectiveness, low corrosion, low waste volume, and fast field implementation time. This is an alternating multistep process. For PWRs, an oxidation treatment is necessary. Projected contact decontamination factors (DFs) are ∼50 on plant Inconel surfaces, with comparable results on stainless steel. Actual test DFs have exceeded 500 in the process test loop. For BWRs, an oxidation step is unnecessary, but very beneficial. DFs of 10 to 20 are achieved without an oxidation treatment. Full process DFs exceed 500 when the oxidation treatment is included. Low corrosion rates are observed, without any adverse effects. Only solid waste is produced by the process. WEC has fabricated a trailer-mounted application system for this process, and is offering it as a decontamination service to commercial customers.83 (Feb. 1984).