ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Mark L. Williams, R. Q. Wright, Brian A. Worley, Odelli Ozer, Walter J. Eich
Nuclear Technology | Volume 71 | Number 2 | November 1985 | Pages 386-401
Technical Paper | Fission Reactor | doi.org/10.13182/NT85-A33691
Articles are hosted by Taylor and Francis Online.
Thermal reactor benchmark calculations have been performed with the “design codes” EPRI-CELL and PDQ using ENDF/B-V cross-section data. The purpose of these calculations is to determine the quality of ENDF/B-V data for predicting reactor parameters when used with methods typically employed for power reactor analysis. This verification is essential if ENDF/B-V cross sections are to be used widely by the nuclear industry for reactor design, core reload, and core-follow studies. It appears that ENDF/B-V, when used in typical reactor design codes, is an accurate data set for light water reactor analysis. Computed resonance integrals and reaction ratios for 238U seem to be slightly high but are within the uncertainty. The average keff obtained for a diverse set of 27 UO2 and MO2 critical configurations is 1.002 ± 0.002. Critical UO2 eigenvalues are consistently slightly overestimated, on the average by 0.2%. The average eigenvalue obtained for the mixed-oxide lattices is 1.0007 with a standard deviation of 0.0023. Plutonium isotopic ratios generally show good agreement with measured values obtained from burned power reactor pins.