ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
K. Tasaka, Y. Koizumi, Y. Kukita, H. Nakamura, Y. Anoda, M. Iriko, H. Kumamaru, M. Suzuki
Nuclear Technology | Volume 71 | Number 3 | December 1985 | Pages 628-643
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT85-A33685
Articles are hosted by Taylor and Francis Online.
The ROSA-III program has conducted system effects tests on the thermal-hydraulic response of a boiling water reactor during a loss-of-coolant accident. The performance of the emergency core cooling systems was of particular interest. As part of this program, ten tests were conducted with (a) a simulated pipe rupture located at the recirculation pump suction line, (b) a spectrum of break area ranging from 0 to 200% of scaled pipe cross-sectional area, and (c) an unavailable high-pressure core spray (HPCS) system. In these tests the pressure vessel depressurized (a) due to the actuation of the automatic depressurization system for scaled break areas of <5%, (b) due to uncovery of the inlet of the broken recirculation pump suction line for scaled break areas of >50%, and (c) due to both for the intermediate break areas between 5 and 50%. Vessel depressurization enabled the injection of emergency core coolant from the low-pressure core spray and low-pressure coolant injection system and thus led to safe recovery without HPCS. The behaviors of the vessel pressure, core mixture level, and core temperatures were fairly well reproduced by the THYDE-B1 code, based on simplified lumpedparameter models for the wide spectrum of break areas investigated.