ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Yoshiko Harima, Kohtaro Ueki, Otohiko Aizawa
Nuclear Technology | Volume 71 | Number 3 | December 1985 | Pages 617-627
Technical Paper | Radiation Biology and Environment | doi.org/10.13182/NT85-A33684
Articles are hosted by Taylor and Francis Online.
Measurements of thermal and nonthermal neutron streaming were taken throughout the medical irradiation room and the two-legged labyrinth of the Musashi Institute of Technology Research Reactor (the Musashi reactor) by using a rem counter. The length of the measured line was 8 m. The measurements were also analyzed by using the Monte Carlo coupling technique. The contribution of nonthermal neutrons was obtained with a cadmium-covered rem counter and that of thermal neutrons was obtained from the difference between the responses measured with and without the cadmium cover. The response ratio of total neutrons to nonthermal neutrons is constant for the straight part of the duct and increases rapidly around the bent portion. The constant values of the response ratio are 2, 3, and 5 for the first, second, and third legs, respectively. The value of 1.5 count / s = 1 mrem / h was used as the coefficient for conversion to the neutron dose rate. The discrepancies between the measured and calculated results are within ∼50% for the nonthermal neutron response, and within a factor of 2 for total neutron response. The fractional standard deviations of the Monte Carlo calculations are 0.07 to 0.12 and 0.13 to 0.24 in the first leg, 0.07 to 0.18 and 0.13 to 0.44 in the second leg, and 0.12 to 0.38 and 0.17 to 0.56 in the third leg for nonthermal and total neutron dose rates, respectively.