ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Yoshiko Harima, Kohtaro Ueki, Otohiko Aizawa
Nuclear Technology | Volume 71 | Number 3 | December 1985 | Pages 617-627
Technical Paper | Radiation Biology and Environment | doi.org/10.13182/NT85-A33684
Articles are hosted by Taylor and Francis Online.
Measurements of thermal and nonthermal neutron streaming were taken throughout the medical irradiation room and the two-legged labyrinth of the Musashi Institute of Technology Research Reactor (the Musashi reactor) by using a rem counter. The length of the measured line was 8 m. The measurements were also analyzed by using the Monte Carlo coupling technique. The contribution of nonthermal neutrons was obtained with a cadmium-covered rem counter and that of thermal neutrons was obtained from the difference between the responses measured with and without the cadmium cover. The response ratio of total neutrons to nonthermal neutrons is constant for the straight part of the duct and increases rapidly around the bent portion. The constant values of the response ratio are 2, 3, and 5 for the first, second, and third legs, respectively. The value of 1.5 count / s = 1 mrem / h was used as the coefficient for conversion to the neutron dose rate. The discrepancies between the measured and calculated results are within ∼50% for the nonthermal neutron response, and within a factor of 2 for total neutron response. The fractional standard deviations of the Monte Carlo calculations are 0.07 to 0.12 and 0.13 to 0.24 in the first leg, 0.07 to 0.18 and 0.13 to 0.44 in the second leg, and 0.12 to 0.38 and 0.17 to 0.56 in the third leg for nonthermal and total neutron dose rates, respectively.