ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
U.K.’s NWS gets input from young people on geological disposal
Nuclear Waste Services, the radioactive waste management subsidiary of the United Kingdom’s Nuclear Decommissioning Authority, has reported on its inaugural year of the National Youth Forum on Geological Disposal forum. NWS set up the initiative, in partnership with the environmental consultancy firm ARUP and the not-for-profit organization The Young Foundation, to give young people the chance to share their views on the government’s plans to develop a geological disposal facility (GDF) for the safe, secure, and long-term disposal of radioactive waste.
Jitze Bergsma, Robert B. Helmholdt, Roel J. Heijboer
Nuclear Technology | Volume 71 | Number 3 | December 1985 | Pages 597-607
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33682
Articles are hosted by Taylor and Francis Online.
For a series of configurations of high-level waste (HLW) storage in a salt repository, gamma transport and deposition have been calculated together with the heating of the salt around waste containers. These time-dependent data were used to calculate colloid growth due to irradiation using a theory by Jain and Lidiard. The results show that by a proper choice of storage parameters the colloid fraction can be limited to a few percent. Overpacking by a few centimetres of steel will reduce the amount to <1%. With the methods described a safe and economic design of HLW containers for final disposal will be possible.