ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Max Furrer, Robin C. Cripps, Reinhard Gubler
Nuclear Technology | Volume 70 | Number 2 | August 1985 | Pages 290-293
Technical Note | Nuclear Safety | doi.org/10.13182/NT85-A33655
Articles are hosted by Taylor and Francis Online.
The overall partition coefficient P describes the distribution of iodine between the iodine in bulk aqueous solution and in the vapor phase:The hydrolysis of iodine is complicated because it involves a number of species that differ considerably in their individual volatilities. Large uncertainties exist in the thermodynamic data of some of the iodine species, especially at temperatures above 25 °C. Because of this, an experiment was undertaken to measure the partition coefficient under varying physical and chemical conditions. Measurements of P were made for a temperature range of 21 to 113 °C under well-defined conditions (liquid molar concentration, pH, and redox potential) for inorganic iodine. The experimental results are interpreted with the aid of an analytical model and published thermodynamic data. A good agreement between calculated and measured values was found. The experimental setup allows the determination of very high partition coefficients up to a value of 2.0 × 106. This is demonstrated by adding cesium-iodide to the fuel pool water of a boiling water reactor.