ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Trygve E. Eriksen
Nuclear Technology | Volume 70 | Number 2 | August 1985 | Pages 261-267
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33651
Articles are hosted by Taylor and Francis Online.
Migration of I52Eu(III), 235Np(V), 237Pu(IV), 241Am(III), 99Tc(VII), and 99Tc(IV) was studied in natural fissures oriented parallel to the axis of granitic drill cores. A pulse of radionuclide solution was injected at one end of the fissure and the temporal change in radionuclide concentration of the effluent measured. At the end of each experiment the fissure was opened and the radionuclide distribution on the fissure surfaces measured. The radionuclide distribution ratios Ra, calculated from the measured retardation, correlate well to published distribution coefficients Kd. The increase in retardation of 235Np with increasing pH in the pH range 6 to 9 is in accordance with the hydrolytic equilibrium NpO2+ + OH‾ ⇄ NpO2(OH). Reduction of Tc(VII) to Tc(IV) resulted in a marked increase in retardation.