ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Survey says . . . Emotional intelligence important in nuclear industry
The American Nuclear Society’s Diversity and Inclusion in ANS (DIA) Committee hosted a workshop social at the 2024 Winter Conference & Expo in November that brought dozens of attendees together for an engaging—and educational—twist on the game show Family Feud.
Trygve E. Eriksen
Nuclear Technology | Volume 70 | Number 2 | August 1985 | Pages 261-267
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33651
Articles are hosted by Taylor and Francis Online.
Migration of I52Eu(III), 235Np(V), 237Pu(IV), 241Am(III), 99Tc(VII), and 99Tc(IV) was studied in natural fissures oriented parallel to the axis of granitic drill cores. A pulse of radionuclide solution was injected at one end of the fissure and the temporal change in radionuclide concentration of the effluent measured. At the end of each experiment the fissure was opened and the radionuclide distribution on the fissure surfaces measured. The radionuclide distribution ratios Ra, calculated from the measured retardation, correlate well to published distribution coefficients Kd. The increase in retardation of 235Np with increasing pH in the pH range 6 to 9 is in accordance with the hydrolytic equilibrium NpO2+ + OH‾ ⇄ NpO2(OH). Reduction of Tc(VII) to Tc(IV) resulted in a marked increase in retardation.