ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
Yoshimasa Yamamoto, Yukihiko Komatsu, Minoru Harada
Nuclear Technology | Volume 70 | Number 2 | August 1985 | Pages 254-260
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT85-A33650
Articles are hosted by Taylor and Francis Online.
A new consolidation system for the spent burnable poison assembly utilizing a sequence control robot operated under water was proposed. A credible accident in the system was analyzed mainly from the viewpoint of tritium release, based on the diffusion analysis of tritium in borosilicate glass. It was found that the amount of tritium released would be small even after the rupture of burnable poison rods. An experiment on a new consolidation system was performed using spent burnable poison assemblies. The volume of burnable poison assemblies was reduced safely and securely by a factor of 7 to 14 for burnable poison rods and by 22 for hold-down portions. It was proved that the consolidation system is collectively feasible.