ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Fabrication milestone for INL’s MARVEL microreactor
A team from Idaho National Laboratory and the Department of Energy’s Office of Nuclear Energy (DOE-NE) recently visited Carolina Fabricators Inc. (CFI), in West Columbia, S.C., to launch the fabrication process for the primary coolant system of the MARVEL microreactor. Battelle Energy Alliance (BEA), which manages INL, awarded the CFI contract in January.
H. Mogard, H. Knaab, U. Bergenlid, G. Lysell
Nuclear Technology | Volume 69 | Number 2 | May 1985 | Pages 236-242
Technical Note | Nuclear Fuel | doi.org/10.13182/NT85-A33634
Articles are hosted by Taylor and Francis Online.
The Studsvik Demo-Ramp-II Project was an internationally sponsored research project designed to investigate the pellet/clad interaction phenomenon during short time power transients. The project included eight fuel rod segments of standard boiling water reactor design, which were operated to burnups ranging from 25 to 29 MWd/kg uranium in a power reactor. The rods were subsequently subjected to power ramp or transient tests in the Studsvik R2 reactor. The failure threshold (where cladding failure and fission product release occur after a sufficient time) was determined from two ramp tests to be ∼40 kW/m for the present rods. The six remaining rods were then subjected to short power transients to heat generation rates up to 48 kW/m. No cladding failures were detected after the transients, by activity release or examination by means of neutron radiography. The unexpected result was, however, that a large number of nonpenetrating (incipient) cladding cracks were formed very rapidly, within a minute. The crack depths, measured by scanning electron microscopy, ranged from 10 to 50% of the cladding wall thickness.